T249T

Instruction Manual

TAIK ELECTRIC

1. Exterior

1.1 Front Plate

(1) Trip energizing status
(2) Alarm energizing status
(3) Alarm energizing on Channel 4
(4) Faults status
(5) RS 485 transmission status
(It is illuminated during a successful connection)
(6) Max/Min temp measurements
(7) Operation buttons
(8) Temp measurements on $\mathrm{CH} 1-4$
(9) Measurement units
(4) Auto or Manual mode for FAN 1-2 On-Off
(B) FAN 1 threshold value, is illuminated as FAN 1 is energized
(C) FAN 2 threshold value, is illuminated as FAN 2 is energized
(D) DC $4-20 \mathrm{~mA}$ corresponds to the selected mode, and the present outputting values
(1) Temp inputs from $\mathrm{CH} 1 \sim 4$
(2) RS 485 interface
(3) Relay contacts, Relay 1 (1G 1a): Trip ; Relay 2(2G 2a): Alarm
(4) Aux. power supply and FAN 1-2
(5) Relay contacts, Relay 1 (1G 1a): Alarm for CH 4 ; Relay 2(2G 2a): Faults
(6) Analog output (DC 4-20mA)

2. Installation and Wiring:

2.1 Dimension: Unit (mm)

- Rear view

- Side view

2.2 Wiring:
- Entire wirings

Fan1 Fan2 Relay $\begin{aligned} & \text { Relay } \\ & \text { Contact } \\ & \text { Contact }\end{aligned}$ Aux. Source

- Cut-out

3. Main Measured Displays and Operation Buttons:

3.1 Main Measured Displays:
*This page won't be shown on display until 1-3 Au6 is set to Y
*This page won`t be shown on display until $H L d P$ is set to Y

Functions of Buttons:

PROG
Press: Shift to the next main measured display
Hold: Enter SETUP with password
Presence of the Max Measured Temp:
Hold for clearance of the max value Presence of the Min Measured Temp: Hold for clearance of the min value

Hold for shift to the Manual or Auto mode during the presence of the main measured displayPress for FAN 2 relay contact to be energized in manual mode, and press again to be de-energized
(Press for FAN 1 relay contact to be energized in manual mode and press again to be de-energized

3.2 Unit Conversion:

$1^{\circ} \mathrm{F}=1^{\circ} \mathrm{C}$ * $1.8+32$

3.3 Fault Indication:

Internal Memory Error

Temp Sensor Incorrect Connection

The indication of FAULT will be displayed as the above faults happen, and meanwhile the contact relay designated for fault wil be energized.
4. Setup and Operation Buttons:

- Functions of Buttons:

Main Configuration Shift to the next configuration	Sub Configuration © Shift to the upper configuration	Value/Mode Settings Δ Increase value
PROG Access to the sub configuration	V Shift to the next configuration	\checkmark Decrease value
OK Return to the main measured display	PROG Access to the value/mode setting	4 Shift the digit position
	0 OK Return to the main configuration	0 O Confirm setting then return the sub configuration

Δ

CH4 Time Delay(sec)

ELE
$\mathrm{Hi}^{\text {l }}$
dir
\square
Max/Min Enabled

4．2 Functions of Sub Configuration

FFin
$\begin{gathered} 0101 \\ 01 \\ 0 \end{gathered}$

Threshold

FFin

Time Delay（sec

FFin

FFin

Time Delay（sec）

FAN 1 energized／threshold value
Set from 0－400

FAN 1 hysteresis，the set value is dead band for de－actuated status Set from 0－99

FAN 1 starts to be energized after reaching the set time delay
Set from 0－99

FAN 2 corresponds to the selected mode n：Disabled，1－3：Channel 1－3 Temp， CH 4 ：Channel 4 Temp

FAN 2 energized／threshold value Set from 0－400

FAN 2 hysteresis，the set value is dead band for de－actuated status Set from 0－99

FAN 2 starts to be energized after reaching the set time delay
Set from 0－99

F9n
65
h
hir

Auto Run（H）

$\begin{aligned} & \text { FFin } \\ & 151 \end{aligned}$

r－
ErF
日明
管等
Trip Threshold

白 Gil

11．
H15
Alarm Hysteres

Auto－Running in interval period（Hour）
Set from 1－999

Auto－Running time（minute）
Set from 0－999

Trip energized／threshold value
Set from 0－400

Trip Hysteresis，the set value is dead band for de－actuated status Set from 0－99

Trip Time Delay starts to be energized after reaching the set time delay Set from 0－99

Alarm energized／threshold value Set from 0－400

Alarm Hysteresis，the set value is dead band for de－actuated status
Set from 0－99

[-3

CH4 Threshold

CH4 Hysteresis

「31
［ H
日車
［ill

H4 Time Delay（sec

46
Pair Fin
Address
4昌
曰鬲い 96

Alarm Time Delay starts to be energized after reaching the set time delay Set from 0－99

Ch4 Alarm enabled／disabled
n ：disabled y ：enabled

Ch4 Threshold energized／threshold value Set from 0－400

Ch4 Hysteresis，the set value is dead band for de－actuated status
Set from 0－99

Ch4 Time Delay starts to be energized after reaching the set time delay
Set from 0－99

RS 485 Address
Set from 1－255

RS 485 Frame
12：1200 $24: 2400 \quad 48: 4800$
96：9600 192：19200 $384: 38400$

485
Fr．
ni．i．
Frame

485
$[85$
Hibl
Format

Floating Point Value
n．8．2 o．8．1 e．8．1 n．8．1

Swap High／Low Word in order
LH：Transmit Low Word first，
High Word subsequently
HL：Transmit High Word first，
Low Word subsequently
4－20mA Correspondent
n：Disabled CH1，CH2，CH3，Ch4，
Avg：Average on CH1－2－3，
Hi：Max value among $\mathrm{CH} 1-2-3$
＊DC $4-20 \mathrm{~mA}$ only corresponds a fixed $0-200^{\circ} \mathrm{C}$
Measurement Unit
${ }^{\circ} \mathrm{C}{ }^{\circ} \mathrm{F}$
（Max／Min measured value has to be cleared after changing the unit）

Password

0－999

Relay Contact On／Off Test
n：Off 1：FAN 1 On 2：FAN 2 On 4：CH4 Alarm On
A：Alarm On T：Trip On F：Fault On
While your access to this setting，the shown＂ n ＂positioned
in the downside and right corner is blinking，pressing up or down button to energize／de－energize the relay contact．

Backlight will be turned off after the time is set in
minute without pressing any button set from 0－99
（0：Keep illuminating）
\square

| ELE |
| :---: | :---: |
| Pug |
| Average Time |

π
CH1-3 Average

Average on CH1-2-3

Appearing on main measured display
n: Disabled Y: Enabled

ELE
Hil
dir
4

Max/Min Enabled

```
    ELE Indicate program version (non-setup)
    uEr
    u:
Program Version
```


Average Sampling Times

Set from 1-99

Max/Min Measured Temp
Appearing on main measured display
n: Disabled Y: Enabled

| ELE |
| :--- | :--- |
| UE |
| Progian Version |

5. General Data

- LCD graphical display:

Format
3" large graphical backlit LCD
Temp 4 rows of 3 digits represented for Channel 1 to 4
Icons and symbols RS 485 transmission, analog output value, temp units, temp channel, internal fault, alarm, trip, fan start-up setup

- Auxiliary power supply:

Operation range	AC/DC85-265V
Frequency	$45-65 \mathrm{~Hz}$

Power consumption

$\leqq 15 \mathrm{VA}$
(Testing during all outputs being fully energized)

- Temp. sensor input:

Type Platinum RTD 3-Wire,PT100,PT500,PT1000
Measuring range
$-200-600^{\circ} \mathrm{C}$
available on T249T
Tolerance loss
Class A according to EN 60751

- Communication interface:

Interface	RS485
Terminal position	Slot A
Protocol	MODBUS RTU
Baud rate	1200 ~ 38400
Address range	1~255
Data format	N, 8, 1/ N, 8, $/$ / O, 8, 1/E, 8,1
Parallel limit	32 Units

- Analog output:

Terminal position
Slot D
Output signal
Isolated DC $4-20 \mathrm{~mA}$ corresponds to a fixed $0-200^{\circ} \mathrm{C}$
Correspondent....... Individual from CH 1 to CH 4 , Average on $\mathrm{CH} 1-2-3$, Max value among $\mathrm{CH} 1-2-3$
Output resistance ... 350Ω
Accuracy .. $\pm 0.25 \%$ R.O.

- Relay contact:

Terminal position
Slot B: Relay 1-Trip, Relay 2-Alarm Slot C: Relay 1-CH4 Alarm , Relay 2- Fault

Fan1, Fan2
Ralay contact form Form A(N.O.)
Correspondent
FAN 1, FAN2,Trip,Alarm,
CH4 Alarm , Fault
Setting range
0-400
Rated capacity
Fan1,Fan2: AC250V 10A, DC30V 7A Others: AC250V 5A, DC30V 5A

- Environment Temperature:

Operating temperature
${ }^{0-60^{\circ} \mathrm{C}}$
Max humidity 5-95\%RH,(Non-condensing)
Storage temperature
$-10-70^{\circ} \mathrm{C}$

- Electrical feature:

Sampling time
IP enclosure
Dielectric strength
h

Insulation resistance
0.5 Sec.

IP54 front,IP20 rear Input/Output/Power AC2KV, 1 min Terminals/Case AC3KV, 1 min Input/Output/Power/Case

DC500V $\geqq 100 \mathrm{M} \Omega$

Electromagnetic compatibility (EMC)
Conducted emission
EN 55011
Radiated emmission
EN 55011
Harmonic current emissions
EN 61000-3-2
Voltage changes, voltage fluctuations, and flicker
Electrostatic discharge
EN 61000-3-3
IEC61000-4-2
Electromagnrtic field immunity
IEC61000-4-3
Electrical fast transient/burst immunity
IEC61000-4-4
Surge immunity
IEC61000-4-5
Immunity to conducted disturbances
IEC61000-4-6
Power frequency magnetic field immunity
IEC61000-4-8
Short interruptions and voltage variations immunity
IEC61000-4-11
Certificate CE

6. Communication

6.1 Protocol:

The meters connected more than 30 pcs shall use a repeater while the interface is communicated by using Modbus Protocol.
6.2 Transmission

RTU MODE

6.3 Communication:

RS 485 Half-Duplex

6.4 Modbus Frame:

6.4.1 Basic frame: Hexadcimal

Start of frame	Address Field	Function Code	Data Field	Error Check	End of Frame

Start of frame : The data is not transmitted by a silent period of at least 4 characters.
Address field: The address field is valid in the range of 1-255.
The address 0 for broadcast command is only valid for Function
Code $\rightarrow \mathrm{H}$, but it would not reply to any message.
Function code: $03 \mathrm{H} \rightarrow$ Read Holding Registers.
$06 \mathrm{H} \rightarrow$ Write ingle Holding Register.
Data field : The stsrt address of a register, and it contains the requested
WORD to be read or the values to be written.
Error check : 16bit CRC.
End of frame : The data is not transmitted by a silented by a silent period of at least 4 characters.
6.4.2 Bit per byte: Access to the flowchart of 485 FrA under Sub Configuration for Setting.

Start Bit	DataBit	Parity	Stop	Frame
1	8	None	2	$\mathrm{~N}, 8,2$
1	8	Odd	1	$\mathrm{O}, 8,1$
1	8	Even	1	$\mathrm{E}, 8,1$
1	8	None	1	$\mathrm{~N}, 8,1$

6.5 Read Input Registers:

Query:

Start of Frame	Address Field	Function Code	Start Address Hi	Start Address Lo	Number of ord Hi	Number of Word Lo	Error Check	End of
	$01 \mathrm{H} \sim \mathrm{FFH}$	03 H	$0 \sim \mathrm{nnH}$	$0 \sim \mathrm{nnH}$	0 H	$1 \sim \mathrm{nnH}$	CRC Lo CRC Hi	
	1 Byte	1 Byte	2 Byte	2 Byte		2 Byte		

Response: (The command shall be correct)

Start of Frame	Address Field	Function Code	Number of Data Byte Count	$\begin{gathered} \text { D0, D1....Dn } \\ (\mathrm{Hi}, \mathrm{Lo}, \mathrm{Hi}, \mathrm{Lo}) \end{gathered}$	Error Check	$\begin{array}{\|c\|} \hline \text { End } \\ \text { of } \\ \text { Frame } \end{array}$
	01H~FFH	03H			CRC Lo ${ }^{\text {CR }}$ Hi	
	1 Byte	1 Byte	1 Byte		2 Byte	

6.6 Write Input Registers : A single WORD for Writing Command Query:

Start of Frame	Address Field	Function Code	Start Address Hi	Start Address Lo	Value Hi..	Value .Lo	Error Check	End of Frame
	$01 \mathrm{H} \sim$ FFH	06 H	$0 \sim \mathrm{nnH}$	$0 \sim \mathrm{nnH}$	Setting Value	CRC Lo CRC Hi		
	1 Byte	1 Byte	2 Byte		2 or 4 Byte	2 Byte		

Response : (The command shall be correct)

Start of Frame	Address Field	Function Code	Start Address Hi	Start Address Lo	Value Hi..	Value .Lo	Error Check	End of Frame
	$01 \mathrm{H} \sim$ FFH	06 H	$0 \sim \mathrm{nnH}$	$0 \sim \mathrm{nnH}$	Setting Value	CRC Lo CRC Hi		
	1 Byte	1 Byte	2 Byte		2 or 4 Byte	2 Byte		

6.7 Errors: Command Errors

Start of Frame	Address Field	Function Code	Error Code	Error Check	End of Frame
	$01 \mathrm{H} \sim$ FFH	83 H or 86 H		CRC Lo CRC Hi	
	1 Byte	1 Byte	1 Byte	2 Byte	

- Function Code : Response to the received Function Code but MSB being set to 1,
- Error Code :

01 : Error Function.
02 : Error Data Address.
03 : Error Data Valve

6.8 CRC Calculation :

The CRC is calculated on all the bytes of a message from the address field to the last data bytes inclusively. It means a message frame in error if a packet in the final CRC check could not be valid for combination. A typical message frame is being started form the address field to the end of data field.

CRC Performing

1. Load a CRC register with xxxx.
2. Exclusive OR the first 8bit byte of the message with the low order byte of the 16 bit CRC register, subsequently putting the result in the CRC register.
3. Shift the CRC register one bit to the right (toward the LSB), zero filling the MSB. Extract and examine the SLSB.
4. Repeat step 3 if the $\operatorname{SLSB}=0$. Exclusive OR the CRC register with the polynomial if the $\operatorname{SLSB}=0$, subsequently putting the result in the CRC register.
5. Repeat Steps 3 and 4 until 8 shifts have been performed.
6. Repeat Steps 2 through 5 for the next 8 bit byte of the message. Continue doing this until the 2 bytes have been processed.
7. When the CRC is placed into the message, its upper and lower bytes must be swapped.

CRC Checking

The returned CRC register is as unsigned short int. The start address and the data field have transmitted, and the returned CRC register with the low and high bytes has been swapped.
static unsigned char auchCRCHi[]=\{
$0 \mathrm{x} 00,0 \mathrm{xc} 1,0 \mathrm{x} 81,0 \mathrm{x} 40,0 \mathrm{x} 01,0 \mathrm{xc} 0,0 \mathrm{x} 80,0 \mathrm{x} 41,0 \mathrm{x} 01,0 \mathrm{xc} 0$, $0 \mathrm{x} 80,0 \mathrm{x} 41,0 \mathrm{x} 00,0 \mathrm{xc} 1,0 \mathrm{x} 81,0 \mathrm{x} 40,0 \mathrm{x} 01,0 \mathrm{xc} 0,0 \times 80,0 \times 41$ $0 x 00,0 x c 1,0 x 81,0 x 40,0 x 00,0 x c 1,0 x 81,0 x 40,0 x 01,0 x c 0$, $0 \mathrm{x} 80,0 \mathrm{x} 41,0 \mathrm{x} 01,0 \mathrm{xc} 0,0 \mathrm{x} 80,0 \mathrm{x} 41,0 \mathrm{x} 00,0 \mathrm{xc} 1,0 \mathrm{x} 81,0 \mathrm{x} 40$ $0 x 00,0 x c 1,0 x 81,0 x 40,0 x 01,0 x c 0,0 x 80,0 x 41,0 x 00,0 x c 1$, $0 x 81,0 x 40,0 x 01,0 x c 0,0 x 80,0 x 41,0 x 01,0 x c 0,0 x 80,0 x 41$ $0 x 00,0 x c 1,0 x 81,0 x 40,0 x 01,0 x c 0,0 \times 80,0 x 41,0 x 00,0 x c 1$, $0 \times 81,0 \times 40,0 \times 00,0 \times c 1,0 \times 81,0 \times 40,0 \times 01,0 \times c 0,0 \times 80,0 \times 41$ $0 x 00,0 x c 1,0 x 81,0 x 40,0 x 01,0 x c 0,0 x 80,0 x 41,0 x 01,0 x c 0$, $0 x 80,0 x 41,0 x 00,0 x c 1,0 x 81,0 x 40,0 x 00,0 x c 1,0 x 81,0 x 40$, $0 x 01,0 x c 0,0 x 80,0 x 41,0 x 01,0 x c 0,0 x 80,0 x 41,0 x 00,0 x c 1$, $0 x 81,0 x 40,0 x 01,0 x c 0,0 x 80,0 x 41,0 x 00,0 x c 1,0 x 81,0 x 40$ $0 \mathrm{x} 00,0 \mathrm{xc} 1,0 \mathrm{x} 81,0 \mathrm{x} 40,0 \mathrm{x} 01,0 \mathrm{xc} 0,0 \times 80,0 \mathrm{x} 41,0 \mathrm{x} 01,0 \mathrm{xc} 0$ $0 \mathrm{x} 80,0 \mathrm{x} 41,0 \mathrm{x} 00,0 \mathrm{xc} 1,0 \mathrm{x} 81,0 \mathrm{x} 40,0 \times 00,0 \mathrm{xc} 1,0 \mathrm{x} 81,0 \times 40$ $0 \times 01,0 \mathrm{xc} 0,0 \times 80,0 \times 41,0 \times 00,0 \mathrm{xc} 1,0 \times 81,0 \times 40,0 \times 01,0 \mathrm{xc} 0$, $0 x 80,0 x 41,0 x 01,0 x c 0,0 x 80,0 x 41,0 x 00,0 x c 1,0 x 81,0 x 40$, $0 x 00,0 x c 1,0 x 81,0 x 40,0 x 01,0 x c 0,0 x 80,0 x 41,0 x 01,0 x c 0$ $0 \mathrm{x} 80,0 \mathrm{x} 41,0 \mathrm{x} 00,0 \mathrm{xc} 1,0 \mathrm{x} 81,0 \mathrm{x} 40,0 \times 01,0 \mathrm{xc} 0,0 \mathrm{x} 80,0 \times 41$ $0 \mathrm{x} 00,0 \mathrm{xc} 1,0 \mathrm{x} 81,0 \mathrm{x} 40,0 \mathrm{x} 00,0 \mathrm{xc} 1,0 \mathrm{x} 81,0 \mathrm{x} 40,0 \mathrm{x} 01,0 \mathrm{xc} 0$ $0 \times 80,0 \times 41,0 \times 00,0 \times c 1,0 \times 81,0 \times 40,0 \times 01,0 \times c 0,0 \times 80,0 \times 41$ $0 \mathrm{x} 01,0 \mathrm{xc} 0,0 \times 80,0 \mathrm{x} 41,0 \mathrm{x} 00,0 \mathrm{xc} 1,0 \times 81,0 \times 40,0 \mathrm{x} 01,0 \mathrm{xc} 0$, $0 x 80,0 x 41,0 x 00,0 x c 1,0 x 81,0 x 40,0 x 00,0 x c 1,0 x 81,0 x 40$, 0x01,0xc0,0x80,0x41,0x01,0xc0,0x80,0x41,0x00,0xc1 $0 x 81,0 x 40,0 x 00,0 x c 1,0 x 81,0 x 40,0 x 01,0 x c 0,0 x 80,0 x 41$ $0 \mathrm{x} 00,0 \mathrm{xc} 1,0 \mathrm{x} 81,0 \mathrm{x} 40,0 \mathrm{x} 01,0 \mathrm{xc} 0,0 \mathrm{x} 80,0 \mathrm{x} 41,0 \mathrm{x} 01,0 \mathrm{xc} 0$ $0 \times 80,0 \times 41,0 \times 00,0 x c 1,0 x 81,0 \times 40\}$;

```
/*CRC Generation Function with 'C' language*/
```

/*CRC Generation Function with 'C' language*/
/* Msg:*message to calculate CRC upon*/
/* Msg:*message to calculate CRC upon*/
/* usDatalen: number of bytes in message*/
/* usDatalen: number of bytes in message*/
unsigned int CRC16(char *Msg, unsigned char usDatalen)
unsigned int CRC16(char *Msg, unsigned char usDatalen)
{
{
unsigned char uchCRCHi =0xFF;/*CRC high byte*/
unsigned char uchCRCHi =0xFF;/*CRC high byte*/
unsigned char uchCRCLo = 0xFF; /*CRC low byte*/
unsigned char uchCRCLo = 0xFF; /*CRC low byte*/
unsigned char uIndex ;
unsigned char uIndex ;
while (usDatalen--)/*pass through message buffer*/
while (usDatalen--)/*pass through message buffer*/
{
{
uIndex=uchCRCHi^*Msg++;/*calculate the CRC*/
uIndex=uchCRCHi^*Msg++;/*calculate the CRC*/
uchCRCHi=uchCRCLO6auchCRCHi[uIndex];
uchCRCHi=uchCRCLO6auchCRCHi[uIndex];
uchCRCLo=auchCRClo [uIndex];
uchCRCLo=auchCRClo [uIndex];
}
}
}
}
return (uchCRCHi<<8| uchCRCLo);
return (uchCRCHi<<8| uchCRCLo);
-

```
    -
```


6.9 Data address: Integer format

6.9.1 Setup

Address	(Hex)	Contents	Format	Word	Access	Range \& Unit
0000	0000H	Fan 1 On	Integer	1	R/W	0-600
0001	0001H	Fan 1 Hysteresis Band	Integer	1	R/W	0-99
0002	0002H	Fan 1 Delay	Integer	1	R/W	0-99
0003	0003H	Fan 2 Select	Integer	1	R/W	0-2 (Note)
0004	0004H	Fan 2 On	Integer	1	R/W	0-600
0005	0005H	Fan 2 Hysteresis Band	Integer	1	R/W	0-99
0006	0006H	Fan 2 Delay	Integer	1	R/W	0-99
0007	0007H	Fan Test Cycle(Hour)	Integer	1	R/W	0-999
0008	0008H	Fan Test On(Minute)	Integer	1	R/W	0-999
0009	0009H	Trip On	Integer	1	R/W	0-600
0010	000AH	Trip Hysteresis Band	Integer	1	R/W	0-99
0011	000BH	Trip Delay	Integer	1	R/W	0-99
0012	000CH	Alarm On	Integer	1	R/W	0-600
0013	000DH	Alarm Hysteresis Band	Integer	1	R/W	0-99
0014	000EH	Alarm Delay	Integer	1	R/W	0-99
0015	000FH	CH4 Alarm Select	Integer	1	R/W	0-1 (Note)
0016	0010H	CH4 Alarm On	Integer	1	R/W	0-600
0017	0011H	CH4 Alarm Hysteresis Band	Integer	1	R/W	0-99
0018	0012H	CH4 Alarm Delay	Integer	1	R/W	0-99
0019	0013H	485 Address	Integer	1	R/W	1-255
0020	0014H	485 Baud Rate	Integer	1	R/W	0-5 (Note)
0021	0015H	485 Frame	Integer	1	R/W	0-3 (Note)
0022	0016H	485 Case (HiLol\|LoHi)	Integer	1	R/W	0-1 (Note)
0023	0017H	Output Select	Integer	1	R/W	0-7 (Note)
0024	0018H	Unit	Integer	1	R/W	0-1 (Note)
0025	0019H	Password	Integer	1	R/W	0-999
0026	001AH	Screen Save	Integer	1	R/W	0-99 (Note)
0027	001BH	Sample Average	Integer	1	R/W	0-99
0028	001CH	CH1-3 Average	Integer	1	R/W	0-1 (Note)
0029	001DH	Display Max. \& Min.	Integer	1	R/W	0-1 (Note)
0030	001EH	Reset Maximum	Integer	1	R/W	0-1 (Note)
0031	001FH	Reset Minimum	Integer	1	R/W	0-1 (Note)

Contents	Description
Fan 2 Select	FAN 2 Select, 0:Disabled 1: Channel 1-3 Temp, 2: Channel 4 Temp
CH4 Select	CH4 Enabled, 0:Disabled 1:Enabled
485 Baud Rate	0:1200,1:2400,2:4800,3:9600,4:19200,5:38400
485 Frame	0:n, 8,2,1:o, 8, 1, 2:e, $8,1,3: n, 8,1$
485 Case (HiLol\|LoHi)	Swap H/L Word in order like Float, Long 0:Lo_Hi, 1:Hi_Lo
Output Select	DC 4-20mA Correspondent 0:Disabled 1:CH1, 2: $\mathrm{CH} 2,3: \mathrm{CH} 3,4: \mathrm{CH} 4$ 5: Average on $\mathrm{CH} 1-2-3$ 6: Max value among $\mathrm{CH} 1-2-3$
Unit	Temp. unit $0:{ }^{\circ} \mathrm{C}, 1:{ }^{\circ} \mathrm{F}$
Screen Save	LCD backlight energy saving 00: Keep illuminating 01-99:It is turned off after the time is set in minute without pressing any push button
CH1-3 Average	Display CH1-3 Average. Appearing on main measured display 0: Disabled 1: Enabled
Display Max. \& Min.	Max/Min Measured Temp. Appearing on main measured display 0: Disabled 1: Enabled
Reset Maximum	Clear the max. value 1: Clear
Reset Minimum	Clear the max. value 1: Clear

6.9.2 Values: Integer format

Address	(Hex)	Contents	Format	Word	Access	Range \& Unit
512	200 H	Relay Status	Integer	1	R	Note 6.9 .4
513	201 H	CH 1	Integer	1	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
514	202 H	CH 2	Integer	1	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
515	203 H	CH 3	Integer	1	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
516	204 H	CH 4	Integer	1	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
517	205 H	CH 1 Maximum	Integer	1	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
518	206 H	CH 2 Maximum	Integer	1	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
519	207 H	CH 3 Maximum	Integer	1	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
520	208 H	CH 4 Maximum	Integer	1	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
521	209 H	CH 1 Minimum	Integer	1	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
522	20 AH	CH 2 Minimum	Integer	1	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
523	20 BH	CH 3 Minimum	Integer	1	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
524	20 CH	CH 4 Minimum	Integer	1	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
525	20 DH	$\mathrm{CH} 1-3$ Average	Integer	1	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$

6.9.3 Values: Floating point format (WORD swapping refers to 485 Case)

Address	(Hex)	Contents	Format	Word	Access	Range \& Unit
4096	1000 H	Relay Status	Float	2	R	Note 6.9 .4
4098	1002 H	CH 1	Float	2	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
4100	1004 H	CH 2	Float	2	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
4102	1006 H	CH 3	Float	2	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
4104	1008 H	CH 4	Float	2	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
4106	100 AH	CH 1 Maximum	Float	2	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
4108	100 CH	CH 2 Maximum	Float	2	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
4110	100 EH	CH 3 Maximum	Float	2	R	${ }^{\circ}{ }^{\circ}$ o o ${ }^{\circ} \mathrm{F}$
4112	1010 H	CH 4 Maximum	Float	2	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
4114	1012 H	CH 1 Minimum	Float	2	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
4116	1014 H	CH 2 Minimum	Float	2	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
4118	1016 H	CH 3 Minimum	Float	2	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
4120	1018 H	CH 4 Minimum	Float	2	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
4122	101 AH	$\mathrm{CH} 1-3$ Average	Float	2	R	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$

6.9.4 Relay contact energizing status:

Integer format: Bit0: Fan1, Bit1 : Fan2, Bit2: Ch4 Alarm,
Bit3: Alarm, Bit4: Trip , Bit5: Fault
Floating point format: $2^{0}+2^{1}+2^{2}+2^{3}+2^{4}+2^{55}$
$2^{0}:$ Fan1 , 2 $2^{1}:$ Fan2 $, ~ 2^{2}:$ Ch4 Alarm
$2^{3}:$ Alarm , $2^{4}:$ Trip $2^{5}:$ Fault
6.9.5 Temp sensor wire disconnection: Transmit a value of -10000

